PUlasso - High-Dimensional Variable Selection with Presence-Only Data
Efficient algorithm for solving PU (Positive and Unlabeled) problem in low or high dimensional setting with lasso or group lasso penalty. The algorithm uses Maximization-Minorization and (block) coordinate descent. Sparse calculation and parallel computing are supported for the computational speed-up. See Hyebin Song, Garvesh Raskutti (2018) <arXiv:1711.08129>.
Last updated 4 years ago
4.76 score 6 stars 19 scripts 246 downloads